

Simcenter FLOEFD™ What's New 2019.1-2019.4

Alexey Kharitonovich

FLOEFD 2019.1

Fan Derating

SIEMENS Ingenuity for life

Fans are often set to run below their maximum capacity, to reduce noise and increase their lifetime, but still achieve thermal cooling requirements. Fans are run at less than maximum capacity by reducing the RPM that they operate at. This has the effect of derating (reducing) the fan curve and is simulated using the Derating factor.

 $\Delta P_d = DF^2 \cdot \Delta P$

 $\dot{m}_d = DF \cdot \dot{m}$

Logical Expressions in Formula Dependency

Boundary conditions can be dependent on coordinates, time and monitor parameters such as goals. It is now possible to define sophisticated dependencies using conditional and Boolean expressions such as IF, AND, OR, XOR, NOT, > (more than), < (less than), = (equal to). For example, you can easily set a value of a heat source dependent on two different temperature sensors (defined as temperature goals) so that the dissipated power is downgraded depending on the temperature at either one or another sensor.

Additional Rays for Radiation Sources

You can now add additional rays launched from a radiation source (for Monte Carlo radiation only). This allows for better resolution of radiation or light locally without significant increasing the total number of rays and therefore saving the calculation time. In addition, radiation freezing can be enabled automatically.

Network Assembly's Power is Function of Temperature

Heat power of a Network Assembly (DELPHI compact model) node can be set as dependent on the node's temperature (implicit dependency).

FLOEFD 2019.2

Heat Sink Model in Porous Media

The heat sink model represents a gas-liquid cross-flow heat exchanger which is defined by a conductive porous medium. Cooling gas flowing through the porous medium is the actual fluid specified in the project. Hot liquid flowing perpendicularly is a virtual fluid and just adds heat to the system. The user needs to input Heat Removed vs Mass Flow Rate of gas (obtained from an experiment) and FloEFD calculates effective **Thermal conductivity** and **Volumetric heat exchange coefficient**.

HTC Airflow VS.Pressure Drop &Heat exchanger						
Hot(Coolant) fluid Inlet Temp (°C,Bare core):			90	Cold(A Te	ir) Inlet mp	-10
Hot(Coolant) fluid density(kg/m3)			1031.17	Cold(Ai density	r) fluid (kg/m3)	1.342
Hot(Coolant) fluid specific(KJ/kg.k)		3.5544	Cold(Air) fluid specific(KJ/kg.k)		1.009	
A :=) (=	Coolant rate flow (I/min)					
Flow	3	6	9	12	0	Dpa (Pa)
(113/11)	Performance (W)					
100	3284.2	3392.7	3428.8	3446.8	0	
200	5580.7	5987.2	6123.1	6187.8	0	
300	7151.7	7945.8	8226.6	8370	0	
400	8277.9	9457.8	9888.2	10110.5	0	
500	9199.5	10737.4	11323.4	11629.2	0	
MAX						
DPw(kPa)						

<u>E</u> dit <u>V</u> iew <u>U</u> nits <u>H</u> elp			
) ਛੇ 🔒 📥 🖊 🖌 🕻	5 🖬 🗇		
stabase tree:	Items Item Properties Tables and Curves		
- 🗁 Laminates 🔹 🔺	Property	Value	
🛅 Metals	Name	Isotropic	
	Comments		
- Polymers	Model	Heat Sink Model	
	Permeability type	Isotropic	
Semiconductors	Pressure drop vs. flowrate	Volume Flow Rate	
Ser Defined	x	0.2 m	And
🛨 📣 Steam	Y	0.2 m	
- 🖊 Membranes	Z	0.02 m	A Sel.
Perforated Plates	Heat capacity of gas	1009 J/(kg*K)	
- 🐤 Porous Media	Input temperature of gas	263.15 K	14 11 11 11 11
😑 🐘 Pre-Defined	Heat removed by gas	(Table)	
🚽 🗁 UAF	Heat capacity of liquid	3554 J/(kg*K)	
Metal Mesh Filters	Input temperature of liquid	363.15 K	
Mid-Efficiency Filters	Mass flow of liquid	0.05 kg/s	
Polyostar Filtars	Use turbulent scale		The second se
Ouedestern and United	Use calibration viscosity		
	Use calibration density		
User Defined =	Use effective density		CARLE CARLE AND
- 🔝 Printed Circuit Boards	Density of porous matrix	8960 kg/m^3	
🗠 🛓 Radiation Patterns	Specific heat capacity of porous matrix	390 J/(kg*K)	
📲 Radiation Spectra	Calculate output parameters		
-🕅 Radiative Surfaces	Conductivity type	Isotropic	
🔗 Satellite Orbits	Thermal conductivity	(Table)	
<u> </u>	Volumetric heat exchange coefficient	(Table)	

Radiation Volume Scattering, Radiation distribution in space

SIEMENS Ingenuity for life

Scattering (linear-anisotropic scattering) of radiation within solid bodies can now be taken into account. Scattering coefficient (σ_s) and Scattering anisotropy coefficient (C) can be specified under Radiation Properties for the Solid Material in the Engineering Database (for Monte Carlo radiation model only).

$$\frac{dI\left(\vec{s},\vec{r}\right)}{ds} = \sigma_{s} \left(\frac{1}{4\pi} \int_{4\pi} I\left(\vec{s}_{i},\vec{r}\right) \Phi\left(\vec{s}_{i},\vec{s}\right) d\Omega_{i} - I\left(\vec{s},\vec{r}\right)\right)$$
$$\Phi\left(\vec{s}_{i},\vec{s}\right) = 1 + C \vec{s}_{i} \cdot \vec{s}$$

Also a **Radiation source** can now depend on coordinates and time.

e gait view Qhits Help			
	X 🗈 🛍 🕸		
ptobase tree:	Items Item Properties Tables and Curves		
E- Sotteries	Property	Value	
🖶 🧑 Celestial bodies	Name	Polycarbonate SCAT	
L Ches	Comments		6
Contect Electrical Desister	Density	1020 kg/m*3	
	Specific heat	2100 J/(kg*K)	6
	Conductivity type	Isotropic	
	Thermal conductivity	0.214 W/(m*K)	
	Electrical conductivity	Dielectric	
	⊟ Radiation properties		
	- Set absorption properties as	Absorption coefficient	
	Absorption coefficient	(Table)	
	Refractive index	(Table)	
💼- 👌 Compressible Liquids	Scattering coefficient	0.5 1/mm	
🖟 🗇 Gases	Scattering anisotropy coefficient	-0.7	
the A Liquids			
A Non-Newtonian Liquida	Melting temperature		
Boal Cares			
E Costes			
E Solids			
H- 48 Pre-Defined			
1 III 🗰 User Defined			

Display Component Temperature (Min, Av, Max) in a section with Surface Parameters.

Earlier when local and integral surface parameters values were displayed for each contour (loop) separately, such contours were named by components materials names. For cases in which there were several components with the same materials, different contours were named similarly. Now contours are named uniquely by the **components' names**.

Other Improvements in 2019.2

- Vapor diffusion coefficient dependency on temperature for membranes. Now vapor diffusion coefficient of a membrane can be specified as dependent on temperature.
- Add from component (Linked conditions). Possibility to add local mesh condition from a component (conditional that it is still relative to basic mesh of the main project).
- Dependency. Coordinate dependency for turbulent parameters, components of velocity and Mach number, and pressure is added.
- **DoE**. Response Surface viewer now has a chart for objective function.
- **Free surface**. Air compression is taken into account.
- Cauer export from Calibration. You can now export a structure function into Cauer thermal network format (Spice ready) for further 1D simulation.
- Project template. Project template in FloEFD for CATIA V5 can be used by other FloEFD products so sharing simulation tasks among different CAD systems is now easy.
- MLS update. This version supports Mentor Standard Licensing (MSL) version 2019_2 which uses FlexNet[™] 11.16.2.1. This may require updating the license server.

FLOEFD 2019.3

PDML Import

PDML is originally a FIoTHERM format which is often used by IC vendors for supplying users with IC package simulation models. This format is also used by FloPACK – a product from Mentor Graphics designed to generate accurate thermal libraries of IC components, often as 2R or Network assemblies.

An IC package definition in *.pdml format can now be imported into FloEFD (requires EDA Bridge license).

PDML format contains information about geometry, sources and material properties. The following information can be imported:

- Geometry
- Power load (heat source)
- Material properties, including surface radiative properties ۲
- 2R, Network assembly

EDA Bridge: Add PCB Model to Existing Project via Linked Conditions

PCB can be now imported to an existing project and easily shared to other models.

EDA Import adds PCB to a separate model which is added into main assembly's project as Linked condition (Add from Component)

Complex Dependensies

Parameters were introduced in 18.0 as constants. A boundary condition can be dependent on parameters. Parameters can now be dependent on goals, time, iterations and travels as a function or a table. Together with the possibility to define logical expressions (IF, OR, AND, >, <, etc.) this provides maximum ease and flexibility in defining complex dependencies.

Name	Value	Dimensionality	Туре
Parameter 1_led	< Dependency >	No unit	Number
Parameter 2_chip	< Dependency >	No unit	Number
Parameter 3	< Dependency >	No unit	Number
	Desix-decy (per Type) Vale	Teacher pe	E Desendency 2
at	Dependent en part junios	The second of part of the second of the seco	Dependency type:
	Decrease Vela	Table of value Total Value State Value	Formula Definition
	N C 1.0 Yes 3 C 1.4 High 4 C 1.7 High	100 International Internationa	Formula: [Parameter 1 led]*{Parameter 2 chip}*{Parameter 3}
·····	45 18 65 14 69 10 90		Backspace Clear
	80 EM		7 8 9 + (sin
100			4 5 6 · 1 cos y phi
	NYC 2.00 NYC 4.00 NYC 4.00		1 2 3 * ^ tan z theta
	100 % 4.4 100 % 4/9 101 % 444		0 . E / exp in t
17 17 17 17 17 17 17 17 17 17 17 17 17 1	1115 458 10375 448 10175 448		Parameter Reration ~
	10万元 448 428 12月1日 44 11月1日 43日	1975 8.1 88 1995 8.1 88	Goal VG Average Temperature (Solid) 1 ~

Equation Goal Dependent on CAD parameters

Equation goals can now depend on a CAD parameters.

Automatic Min/Max scale for contour plots

Plot minimum and maximum values can be automatically scaled when results are changed.

졽

Æ

.....

1

.

Buttons in plot work as toggle and keep plot Min Max until they are reset

Remote Calculation Improvement

Improved copying of results from server.

Results are copied to client computer even though CAD was closed.

A special routine is launched when CAD is closing which monitors readiness of results and perform copying to client machine.

In case the computer was switched off, the copying procedure will be done on opening CAD.

Passing arguments to Windows HPC Pack 2016 scheduler at user level

Speed up Flow Trajectories (Pattern on Shape)

The Pattern on Shapes type displays a large number of trajectories much faster.

A new Sphere shape allows for easier definition of trajectory starting points.

Averaging in Steady-State

Parameters can now be averaged over iterations in steady-state analyses.

This in particular can help to reduce noise in a Monte Carlo radiation simulation.

Averaging

No Averaging

Other Improvements in 2019.3

- Phase change for all real gases. Phase change is now available for all real gases not only refrigerants.
- **FLOEFD View.** A few enhancements in FLOEFD's free results viewer:
 - "Normal to Plot" view is added for cut plots.
 - Rotating now rotates around the center of the view.
 - Section can now crop plots (Apply to plots option) not only the geometry.
- **Save As**. Added selection of View mode (Wireframe, Shaded, Shaded with Edges).
- **Results summary**. Added turbulence parameters into results summary.
- Ray plot. Ray plot is available for definition before calculation and can be processed with Batch Results Processing.
- **Surface parameters**. Offset option is added to Surface parameters.
- **Point goals**. When adding points by coordinates you can set the name of the goal.

CAD and Licensing Support

- **CATIA V5-6R2019**. Support of CATIA R29 (SP1 tested).
- **Creo 6.0**. Support of Creo 6.0 (6.0.0.0 and 6.0.1.0).
- **NX 13**. Support of Siemens NX 13 (1847 and 1872 Series).
- SE 2020. Support of Solid Edge 2020.
- Customize Licenses Feature. Customize Features now lists modules rather than specific license features. System administrators can now customize the license choice for multiple users using the CustomizeFeatures.exe routine. For details, refer to the "Selecting License Features to Use" in the Installation Guide.
- MLS update. The new MLS 2109_3 is based on Flexera FlexNet 2019 R2 (11.16.4) where a bug with license management is fixed: A client can be removed from license queue after 2 hours of waiting in case of VPN connection to the server

FLOEFD 2019.4

FMU Export and Import

FMU Export (FIoEFD is a slave) and **FMU Import** (FIoEFD is a master) allows to perform co-simulations of FLOEFD with various simulation tools, such as Simcenter **STAR-CCM+**, **Amesim**, **Flomaster**.

Near field Illuminance, Far Field Luminous Plot

You can now display illuminance (incoming radiant flux adjusted for the capability of human eye, i.e. intensity of visible light) plot.

Near Field Illuminance

Far Field Luminous Intensity

FLOEFD Interface to Simcenter Motion

It is also possible to interface FIoEFD with 3D Motion by transferring FIoEFD results into Motion for analyzing fluid driven kinematic. The new export of forces makes it easier.

Other Improvements in 2019.4

- Import Structure function. Structure function (RC ladder) from T3Ster (*.xCTM) can be imported into Network Assembly.
- Via Material selection. All vias in SmartPCB can be assigned either dielectric or copper material or can be excluded from calculation.
- Component Control filter: Duplicated, Hidden. You can show hidden or duplicated components in the Component Control dialog.
- MinMax from cropped region. Plot Min and Max values are now calculated taking into account plot's crop.
- **LED additional rays.** You can now add additional rays for a specific radiated LED (LED must have "Radiation properties" enabled).
- Cut-off wavelength. You can now specify a radiation wavelength above which the material is considered as opaque.

Thank You